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Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

Instructions ↪→ Prepare the tutorial files

1. The tutorial repository is hosted at
https://gitlab.inria.fr/monitoring/rv-multi

2. Make sure to have docker installed (and running)
3. Set up the docker container (sudo is not needed if docker runs in userpace)

1 git clone https://gitlab.inria.fr/monitoring/rv-multi.git

2 cd rv-multi/docker

3 sudo make fetch

4 sudo make run

You should see:
1 —— rv-multithreaded ——

2
3 root's password is 'root'

4
5 ——————————–

6 Browse the README files:

7 http://localhost:8050/

8 ——————————–

9
10 [user@rv-multi rv-multi]$
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Context ↪→ Brief Overview of RV

· Lightweight verification technique
· Checks whether a run of a program conforms to a specification

(As opposed to model checking which verifies all runs)
· The run is captured as a trace, typically seen as a sequence of events

· Monitors are synthesized (and integrated) to observe the system

· Monitors determine a verdict: B3 = {>,⊥, ?}
· > (true): run complies with specification
· ⊥ (false): run does not comply with specification
· ?: verdict cannot be determined (yet)

System

Instrumentation
Trace

Monitor

Specification

Verdict
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Context ↪→ Example Multithreaded Program

· Let us consider producer-consumer

· All threads access a shared queue

· Producers add items on the queue
· Consumers remove items from the queue

· A correct execution complies with the following properties:

1. (ϕ1) Consumers must not remove an item unless the queue contains

one

2. (ϕ2) All items placed on the queue must be eventually consumed

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 3



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

Context ↪→ Example Multithreaded Program

· Let us consider producer-consumer

· All threads access a shared queue

· Producers add items on the queue
· Consumers remove items from the queue

· A correct execution complies with the following properties:

1. (ϕ1) Consumers must not remove an item unless the queue contains

one

2. (ϕ2) All items placed on the queue must be eventually consumed

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 3



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

Context ↪→ Executions of Producer-consumer

1 pub l i c c l a s s SynchQueue {
2 p r i va t e LinkedList<Integer> q = new LinkedList<Integer >() ;
3 pub l i c void produce ( In t eg e r v ) { q . add (v ) ; }
4 pub l i c In t eg e r consume ( ) { re turn q . p o l l ( ) ; }
5 }

Thread 0 (Producer) Thread 1 (Consumer)

sq.produce(0);

sq.produce(1);

sq.consume(); //0

sq.consume(); //1

1

3

2

4

Execution Verdict

1 2 3 4 >
1 3 2 4 >
2 1 3 4 ⊥ Consume on an empty queue (ϕ1)
1 3 2 ⊥ One element left in queue (ϕ2)
2 4 1 3 ⊥ Violates both (ϕ1) and (ϕ2)
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challenges

1Thread 0

Thread 1

2 4

3

Program/Concurrent Execution

Instrumentation

1

3

2 4

1 2

3

4

Linear

Trace

s

Mϕ

Monitor

Specification (ϕ) Verdict

true

false

· An execution of a parallel program is best seen as a partial order

(happens-before)1.
· Typical RV formalisms2 operate on a total order (sequence) of events.
? An instrumented program must capture the order of events as it happens

during the execution to pass it to monitors.

1

Consistent with weak memory consistency models [AG96, ANB+95, MPA05], Mazurkiewicz
traces [Maz86, GK10], parallel series [LW01], Message Sequence Charts graphs [MR04], and Petri
Nets [NPW81]

2

LTL, MTL [TR05], CFG, ERE, QEA [RCR15], DATE [CPS09], LTL3 monitors [BLS11].
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monitoring multithreaded programs

· In this tutorial we focus on:

1. Available tools capable of performing RV for multithreaded programs
2. Questions to identify the various situations and the appropriate tools

for them

B Some tools allow for writing arbitrary monitors, while handling
instrumentation.

1. We lose the ability to generate monitors automatically

2. Manual monitors can miss information needed for managing
concurrency (instrumentation issues)

3. The process is complicated due to concurrency, and is error-prone (we
show it later)

? (Q0) “Is the developer using the tool to automatically generate monitor logic?”

In this tutorial, we only concern ourselves with the tools that do so.

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 6



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

monitoring multithreaded programs

· In this tutorial we focus on:

1. Available tools capable of performing RV for multithreaded programs
2. Questions to identify the various situations and the appropriate tools

for them

B Some tools allow for writing arbitrary monitors, while handling
instrumentation.

1. We lose the ability to generate monitors automatically

2. Manual monitors can miss information needed for managing
concurrency (instrumentation issues)

3. The process is complicated due to concurrency, and is error-prone (we
show it later)

? (Q0) “Is the developer using the tool to automatically generate monitor logic?”

In this tutorial, we only concern ourselves with the tools that do so.

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 6



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

monitoring multithreaded programs

· In this tutorial we focus on:

1. Available tools capable of performing RV for multithreaded programs
2. Questions to identify the various situations and the appropriate tools

for them

B Some tools allow for writing arbitrary monitors, while handling
instrumentation.

1. We lose the ability to generate monitors automatically

2. Manual monitors can miss information needed for managing
concurrency (instrumentation issues)

3. The process is complicated due to concurrency, and is error-prone (we
show it later)

? (Q0) “Is the developer using the tool to automatically generate monitor logic?”

In this tutorial, we only concern ourselves with the tools that do so.

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 6



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

RV & Multithreaded Programs

Approaches Verifying Sequences of Events

Approaches Focusing on Concurrency Errors

Approaches Utilizing Multiple Traces

Conclusion
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linear specifications for concurrent programs
Instrumentation

Tool Formalisms Support

Java-MOP [CR05] LTL, FSMs, (P)LTL, CFG, ERE,

SRS

3 (AspectJ)

Tracematches [BHL+10] Regular Expressions 3 (AspectJ)

MarQ [RCR15] QEA (Automata-based,

using custom DSL)

7

LARVA [CPS09] DATE (Automata-based) 3 (AspectJ)

· For these tools, the trace is expected to be a sequence of events.
? (Q1) “Are the models of the specification formalism based on a total order?”
· Linearize concurrency so that the trace is a sequence.

1. Treat each thread independently (Perthread monitoring)
Use flags (perthread) or slicing (∀t ∈ threads)

2. Lock the monitor and linearize its input (Global monitoring)

· Alternatively:
Write monitors manually + unsynchronized access to monitor

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 7
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Write monitors manually + unsynchronized access to monitor

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 7



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

linear specifications for concurrent programs
Instrumentation

Tool Formalisms Support

Java-MOP [CR05] LTL, FSMs, (P)LTL, CFG, ERE,

SRS

3 (AspectJ)

Tracematches [BHL+10] Regular Expressions 3 (AspectJ)

MarQ [RCR15] QEA (Automata-based,

using custom DSL)

7

LARVA [CPS09] DATE (Automata-based) 3 (AspectJ)

· For these tools, the trace is expected to be a sequence of events.
? (Q1) “Are the models of the specification formalism based on a total order?”
· Linearize concurrency so that the trace is a sequence.

1. Treat each thread independently (Perthread monitoring)
Use flags (perthread) or slicing (∀t ∈ threads)

2. Lock the monitor and linearize its input (Global monitoring)
· Alternatively:

Write monitors manually + unsynchronized access to monitor

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 7



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

linear specifications for concurrent programs
Instrumentation

Tool Formalisms Support

Java-MOP [CR05] LTL, FSMs, (P)LTL, CFG, ERE,

SRS

3 (AspectJ)

Tracematches [BHL+10] Regular Expressions 3 (AspectJ)

MarQ [RCR15] QEA (Automata-based,

using custom DSL)

7

LARVA [CPS09] DATE (Automata-based) 3 (AspectJ)

· For these tools, the trace is expected to be a sequence of events.
? (Q1) “Are the models of the specification formalism based on a total order?”
· Linearize concurrency so that the trace is a sequence.

1. Treat each thread independently (Perthread monitoring)
Use flags (perthread) or slicing (∀t ∈ threads)

2. Lock the monitor and linearize its input (Global monitoring)

· Alternatively:
Write monitors manually + unsynchronized access to monitor

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 7



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

linear specifications for concurrent programs
Instrumentation

Tool Formalisms Support

Java-MOP [CR05] LTL, FSMs, (P)LTL, CFG, ERE,

SRS

3 (AspectJ)

Tracematches [BHL+10] Regular Expressions 3 (AspectJ)

MarQ [RCR15] QEA (Automata-based,

using custom DSL)

7

LARVA [CPS09] DATE (Automata-based) 3 (AspectJ)

· For these tools, the trace is expected to be a sequence of events.
? (Q1) “Are the models of the specification formalism based on a total order?”
· Linearize concurrency so that the trace is a sequence.

1. Treat each thread independently (Perthread monitoring)
Use flags (perthread) or slicing (∀t ∈ threads)

2. Lock the monitor and linearize its input (Global monitoring)
· Alternatively:

Write monitors manually + unsynchronized access to monitor
A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 7



Instructions Introduction Checking Sequences Checking Concurrency Multi-Trace Conclusion

monitoring a simple program

· Example: Given a linked list, each thread processes the list independently

· Compute avg, min, max etc.
· (SafeIter) For an iterator: always call hasNext before calling next

· Example found in scenarios/process

· Let us begin by using a single monitor to check the property
· Follow the tutorial until reaching the end of “Developing The Global

Monitor (Simplest)”
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perthread monitoring

· Monitor each thread for a given property independently of other threads.
· Java-MOP/Tracematches (perthread flag), LARVA/MarQ (slice on thread)

· Continue tutorial in scenarios/process

B Can we use perthread monitoring to monitor producer-consumer?

· Produce and consume events are observed in separate threads
? We need to check the properties (ϕ1 and ϕ2) across threads

? (Q3) “Does there exist a model of the specification where events are
generated by more than a single thread?”
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global monitoring

· Lock monitor to feed it with events across multiple threads.

· Let us monitor producer-consumer.

· Follow tutorial in scenarios/producer-consumer-v1

· Notice how everything runs smoothly
· That is because this variant (variant 1) is correct.
· The usage of locks is ensures that a correct trace is generated.

· Now let us monitor a non-synchronized producer-consumer.
· Follow tutorial in scenarios/producer-consumer-v2

B You will notice different verdicts reported for different runs
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Global Monitoring ↪→ (Cont’d)

1

2

3 4

5 6

Thread 0

Thread 1

Variant 1

1

2

3 4

5 6

Variant 2

· With the absence of locks, events can happen concurrently.

· In Variant 1: locks guarantee a sequence

· In Variant 2: no locks, monitors will linearize arbitrarily

B Does it suffice to simply use locks on the monitor?
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differences in variants and tools

V Consumers Tool Advice True False Timeout

# % # % # %

1 1-2

REF - 0 (0%)

A 10,000 (100%) 0 (0%) 0 (0%)
JMOP

B 10,000 (100%) 0 (0%) 0 (0%)

A 10,000 (100%) 0 (0%) 0 (0%)
MarQ

B 10,000 (100%) 0 (0%) 0 (0%)

A 10,000 (100%) 0 (0%) 0 (0%)
LARVA

B 10,000 (100%) 0 (0%) 0 (0%)

2 1

REF - 631 (6.3%)

A 4,043 (40.43%) 5,957 (59.57%) 0 (0%)
JMOP

B 7,175 (71.75%) 6 (0.06%) 2,819 (28.19%)

A 4,404 (44.04%) 5,583 (55.83%) 13 (0.13%)
MarQ

B 9,973 (99.73%) 16 (0.16%) 11 (0.11%)

A 4,755 (47.55%) 5,245 (52.45%) 0 (0%)
LARVA

B 9,988 (99.88%) 2 (0.02%) 10 (0.10%)

2 2

REF - 4,785 (47.85%)

A 128 (1.28%) 9,220 (92.20%) 652 (6.52%)
JMOP

B 1,260 (12.60%) 7,617 (76.17%) 1,123 (11.23%)

A 33 (0.33%) 9,957 (99.57%) 10 (0.10%)
MarQ

B 432 (4.32%) 9,530 (95.30%) 38 (0.38%)

A 250 (2.50%) 9,488 (94.88%) 262 (2.62%)
LARVA

B 5,823 (58.23%) 4,131 (41.31%) 46 (0.46%)

Verifying 10,000 executions of the two variants of producer-consumer, using before/after instrumentation
points with respect to ϕ1 and ϕ2.
A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 12
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instrumenting concurrent programs

· Programs are typically instrumented to generate events.
· Locking a monitor guarantees that events are processed as a sequence.

? But is the order of the captured events the same as that which happened
during the execution?

· The code needed to call the monitor usually is not atomic with the event
occurring.

→ A context switch may happen in between

Thread 0

Thread 1

f() mon(f)

g() mon(g)

→ The trace does not represent the actual order of events in the execution.
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instrumentation

· To check for this behavior we will design a simple logging program.
· We have two functions f() and g() called by separate threads multiple

times.
· The functions print f and g, respectively.
· We instrument before/after them to call a monitor which prints f_trace

and g_trace, respectively.
· We compare the order of the events in the trace and actual calls.

· Follow the tutorial in scenarios/collect
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Instrumentation ↪→ Results

1 g f_trace

2 f g_trace

3 f f_trace

4 g g_trace

5 f f_trace

6 g g_trace

7 f f_trace

8 g g_trace

9 f f_trace

10 g f_trace

11 f g_trace

12 f f_trace

13 g g_trace

14 g g_trace

Tool Advice Sync Identical Different

AspectJ
A

3
4,912 5,088

B 9,170 830

A 1,737 8,263
Java-MOP

B
3

9,749 251

A 8,545 1,455
LARVA

B
3

9,992 8

A
7

2,026 7,974
Java-MOP

B 9,517 483

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 15
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Linear Specifications ↪→ Good situations

· Basic idea: check sequences when the events are indeed found as a sequence
in the program

· Is it sufficient to simply ensure the program is correctly synchronized?
· No, the program can still have concurrent events regardless (ex: list

processing / readers-writers)
0.l0t 0.l0s 0.w0 0.u0

s 0.u0
t 3.l0t 2.l0s 1.w0

1.l1t 0.l1c 0.i1 1.l1s 0.u1
c 1.u1

t r1 3.l1c 1.d1 1.u1
s 3.u1

c

2.l2t 1.l2c 1.i2 1.u2
c 2.u2

t r2 2.l2c 0.d2 2.u2
c

? (Q4) “Is the satisfaction of the specification sensitive to the order of
concurrent events?”

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 16
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verifying concurrency correctness

Tool Properties Theroetical Model Online

JPaX

[HR04]

DRF/DF + LTL Lockset-based/ERASER [SBN+97],

sequential consistency only

3

RVPredict

[HMR14]

DRF PTA-based

Maximal Causal Model [HMR14]

7

GPredict

[HLR15]

DRF + RE

Atomic

regions

Concurrency

PTA-based

Maximal Causal Model [HMR14]

7

· These tools verify specific hard-coded (“low-level”) concurrency properties.

· DRF: data race freedom
· DF: deadlock freedom

· General behavior properties are not always checked.
? GPredict allows for behavioral properties but offline

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 17
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gpredict

1 Atomic i tyVio la t ion ( Object o ){
2 event begin be f o r e ( Object o ) : execut ion (m( ) ) ;
3 event read be f o r e ( Object o ) : get (∗ s ) && ta rg e t ( o ) ;
4 event wr i t e be f o r e ( Object o ) : s e t (∗ s ) && ta rg e t ( o ) ;
5 event end a f t e r ( Object o ) : execut ion (m( ) ) ;
6
7 pattern : begin ( t1 , <r1 )
8 read ( t1 ) wr i t e ( t2 ) wr i t e ( t1 )
9 end ( t1 ,>r1 )

10 pattern : read ( t1 ) | | wr i t e ( t2 )
11 }

GPredict specification (from [HLR15])

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 18



Approaches Utilizing Multiple Traces
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Multi-trace RV ↪→ Stream-Based RV

? Tools that utilize multiple traces as input (or it can be seen that way)
→ Techniques/tools need adaptation for multithreaded context

1. Stream-based Runtime Verification:

· Utilizes operations (arbitrary functions) that aggregate streams (of
events): timing/delays, filters, and statistical

· Tools/specification languages:
LOLA [DSS+05],TeSSLa [LSS+18, CHL+18], BEEPBEEP [HK17]

→ Streams for each thread, and determine aggregation function in a
multithreaded context.

A. El-Hokayem, Y. Falcone, Can We Monitor All Multithreaded Programs? 19
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Multi-trace RV ↪→ Hyperproperties

3. Hyperproperties [FRS15]

· Consider multiple traces of the same program (possibly different

executions)
· Used for verifying security policies
· Tool: RVHyper [FHST18]

→ Multiple traces → express multiple possible re-orderings →
concurrency as a hyperproperty
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conclusion

Requires monitor synthesis (Q0)?

Unsynchronized

Java-MOP
MarQ

No

Using total-order formalism (Q1)?

Yes

Monitoring specific properties (Q2)?

No

Events across threads (Q3)?

Yes

Multi-Trace
Stream-Based RV

Decentralized Monitoring

Decentralized Specifications

RV of Hyperproperties

d Need Adaptation/Tools

No

GPredict

X Suitable but offline

Data race/Deadlock

RVPredict
JPaX

Yes

Per-thread
Java-MOP

Tracematches
MarQ

No

Events in concurrent regions (Q4)?

Yes

Unreliable

Yes

Global
Java-MOP

Tracematches
MarQ

LARVA

No

B

B

B : Non-determinism and trace collection issues.
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