On Freeze LTL with Ordered Attributes
Title | On Freeze LTL with Ordered Attributes |
Publication Type | Conference Paper |
Year of Publication | 2016 |
Authors | Decker, N, Thoma, D |
Conference Name | FoSSaCS |
Volume | LNCS |
Date Published | to appear |
Publisher | Springer |
Abstract | This paper is concerned with Freeze LTL, a temporal logic on data words with registers. In a (multi-attributed) data word each position carries a letter from a finite alphabet and assigns a data value to a fixed, finite set of attributes. The satisfiability problem of Freeze LTL is undecidable if more than one register is available or tuples of data values can be stored and compared arbitrarily. Starting from the decidable one-register fragment we propose an extension that allows for specifying a dependency relation on attributes. This restricts in a flexible way how collections of attribute values can be stored and compared. This new conceptual dimension is orthogonal to the number of registers or the available temporal operators. The extension is strict. Admitting arbitrary dependency relations satisfiability becomes undecidable. Tree-like relations, however, induce a family of decidable fragments escalating the ordinal-indexed hierarchy of fast-growing complexity classes, a recently introduced framework for non-primitive recursive complexities. This results in completeness for the class |
URL | http://arxiv.org/abs/1504.06355 |
Refereed Designation | Refereed |
@inproceedings {1172, title = {On Freeze LTL with Ordered Attributes}, booktitle = {FoSSaCS}, volume = {LNCS}, year = {2016}, month = {to appear}, publisher = {Springer}, organization = {Springer}, abstract = {<p>This paper is concerned with Freeze LTL, a temporal logic on data words with registers. In a (multi-attributed) data word each position carries a letter from a finite alphabet and assigns a data value to a fixed, finite set of attributes. The satisfiability problem of Freeze LTL is undecidable if more than one register is available or tuples of data values can be stored and compared arbitrarily. Starting from the decidable one-register fragment we propose an extension that allows for specifying a dependency relation on attributes. This restricts in a flexible way how collections of attribute values can be stored and compared. This new conceptual dimension is orthogonal to the number of registers or the available temporal operators. The extension is strict. Admitting arbitrary dependency relations satisfiability becomes undecidable. Tree-like relations, however, induce a family of decidable fragments escalating the ordinal-indexed hierarchy of fast-growing complexity classes, a recently introduced framework for non-primitive recursive complexities. This results in completeness for the class <span class="MathJax" id="MathJax-Element-1-Frame" role="textbox" style=""><nobr><span class="math" id="MathJax-Span-1" style="width: 1.753em; display: inline-block;"><span style="display: inline-block; position: relative; width: 1.346em; height: 0px; font-size: 129\%;"><span style="position: absolute; clip: rect(0.181em, 1000em, 1.451em, -0.445em); top: -1.023em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="msubsup" id="MathJax-Span-3"><span style="display: inline-block; position: relative; width: 1.366em; height: 0px;"><span style="position: absolute; clip: rect(1.904em, 1000em, 2.907em, -0.445em); top: -2.745em; left: 0em;"><span class="texatom" id="MathJax-Span-4"><span class="mrow" id="MathJax-Span-5"><span class="mi" id="MathJax-Span-6" style="font-family: MathJax_Main; font-weight: bold;">F</span></span></span></span><span style="position: absolute; top: -3.834em; left: 0.7em;"><span class="texatom" id="MathJax-Span-7"><span class="mrow" id="MathJax-Span-8"><span class="msubsup" id="MathJax-Span-9"><span style="display: inline-block; position: relative; width: 0.591em; height: 0px;"><span style="position: absolute; clip: rect(1.579em, 1000em, 2.215em, -0.456em); top: -2.046em; left: 0em;"><span class="mi" id="MathJax-Span-10" style="font-size: 70.7\%; font-family: MathJax_Math; font-style: italic;">ϵ</span></span><span style="position: absolute; top: -1.778em; left: 0.269em;"><span class="mn" id="MathJax-Span-11" style="font-size: 50\%; font-family: MathJax_Main;">0</span></span></span></span></span></span></span></span></span></span></span></span></span></nobr></span>. We employ nested counter systems and show that they relate to the hierarchy in terms of the nesting depth.</p> }, url = {http://arxiv.org/abs/1504.06355}, author = {Normann Decker and Daniel Thoma} }
- News
- Research
- Teaching
- Staff
- Martin Leucker
- Diedrich Wolter
- Ulrike Schräger-Ahrens
- Aliyu Ali
- Mahmoud Abdelrehim
- Phillip Bende
- Juljan Bouchagiar
- Marc Bätje
- Tobias Braun
- Gerhard Buntrock
- Anja Grotrian
- Hannes Hesse
- Raik Hipler
- Elaheh Hosseinkhani
- Hannes Kallwies
- Frauke Kerlin
- Karam Kharraz
- Mohammad Khodaygani
- Ludwig Pechmann
- Waqas Rehan
- Martin Sachenbacher
- Andreas Schuldei
- Annette Stümpel
- Gesina Schwalbe
- Tobias Schwartz
- Daniel Thoma
- Lars Vosteen
- Open Positions
- Contact